MEG: Multi-Expert Gender Classification from Face Images in a Demographics-Balanced Dataset
نویسندگان
چکیده
In this paper we focus on gender classification from face images, which is still a challenging task in unrestricted scenarios. This task can be useful in a number of ways, e.g., as a preliminary step in biometric identity recognition supported by demographic information. We compare a feature based approach with two score based ones. In the former, we stack a number of feature vectors obtained by different operators, and train a SVM based on them. In the latter, we separately compute the individual scores from the same operators, then either we feed them to a SVM, or exploit likelihood ratio based on a pairwise comparison of their answers. Experiments use EGA database, which presents a good balance with respect to demographic features of stored face images. As expected, feature level fusion achieves an often better classification performance but it is also quite computationally expensive. Our contribution has a threefold value: 1) the proposed score level fusion approaches, though less demanding, achieve results which are rather similar or slightly better than feature level fusion, especially when a particular set of experts are fused; since experts are trained individually, it is not required to evaluate a complex multi-feature distribution and the training process is more efficient; 2) the number of uncertain cases significantly decreases; 3) the operators used are not computationally expensive in themselves.
منابع مشابه
Improving Smiling Detection with Race and Gender Diversity
Recent progress in deep learning has been accompanied by a growing concern for whether models are fair for users, with equally good performance across different demographics [26, 17]. In computer vision research, such questions are relevant to face detection and the related task of face attribute detection, among others [15]. We measure race and gender inclusion in the context of smiling detect...
متن کاملSample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملVEGAC: Visual Saliency-based Age, Gender, and Facial Expression Classification Using Convolutional Neural Networks
This paper explores the use of Visual Saliency to Classify Age, Gender and Facial Expression for Facial Images. For multi-task classification, we propose our method VEGAC, which is based on Visual Saliency. Using the Deep Multi-level Network [1] and off-the-shelf face detector [2], our proposed method first detects the face in the test image and extracts the CNN predictions on the cropped face....
متن کاملMulti-view Gender Classification Using Hierarchical Classifiers Structure
In this paper, we propose a hierarchical classifier structure for gender classification based on facial images by reducing the complexity of the original problem. In the proposed framework, we first train a classifier, which will properly divide the input images into several groups. For each group, we train a gender classifier, which is called expert. These experts can be any commonly used clas...
متن کامل